
Curvature, zero modes and quantum statistics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L539

(http://iopscience.iop.org/0305-4470/39/33/L01)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/33
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L539–L545 doi:10.1088/0305-4470/39/33/L01

LETTER TO THE EDITOR

Curvature, zero modes and quantum statistics

M Calixto1,2 and V Aldaya2
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Abstract
We explore an intriguing connection between the Fermi–Dirac and Bose–
Einstein statistics and the thermal baths obtained from a vacuum radiation of
coherent states of zero modes in a second quantized (many-particle) theory on
the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter
and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a
(zero-curvature) group contraction to the Newton–Hooke (harmonic oscillator)
group. We also make some comments on the vacuum energy density and the
cosmological constant problem.

PACS numbers: 04.62.+v, 03.65.Fd, 67.40.Db, 11.30.Qc

1. Introduction

The spin-statistics theorem in quantum field theory relates the spin of a particle to the
statistics obeyed by that particle. Here we investigate an interesting correspondence between
curvature (‘boundness’ and compactness) and quantum statistics. The interrelation between
both concepts is established through vacuum coherent configurations of zero modes in quantum
field theory.

Quantum vacua are not really empty. We know that zero-point energy, like other non-
zero vacuum expectation values, leads to observable consequences such as, for instance, the
Casimir effect [1], and influences the behaviour of the universe at cosmological scales, where
the vacuum (dark) energy is expected to contribute to the cosmological constant, which affects
the expansion of the universe. In quantum field theory, one expects the vacuum state to be stable
under the basic symmetry transformations G (namely, the Poincaré group). Then the action of
some spontaneously broken symmetry transformations can destabilize the vacuum and make it
to radiate. Such is the case of the Planckian radiation of the Poincaré-invariant vacuum under
uniform accelerations, that is, the Unruh effect [2]. Here, the Poincaré-invariant vacuum looks
the same to any inertial observer but converts into a thermal bath of radiation with temperature
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T = h̄a/2πckB in passing to a uniformly accelerated frame (a denotes the acceleration, c the
speed of light and kB the Boltzmann constant). These radiation phenomena are usually linked
to some kind of global mutilation of the spacetime (namely, existence of horizons). In [3], it
was shown that the reason for this radiation is more profound and related to the spontaneous
breakdown of the conformal symmetry in quantum field theory. From this point of view,
a Poincaré-invariant vacuum can be regarded as a coherent state of conformal zero modes,
which are undetectable (‘dark’) by inertial observers but unstable under relativistic uniform
accelerations (special conformal transformations). There we used the conformal group in
(1+1) dimensions, SO(2, 2) � SO(2, 1) × SO(2, 1), which consists of two copies of the
pseudo-orthogonal group SO(2, 1) (left- and right-moving modes, respectively).

In this letter, we construct O(3),O(2, 1) and Newton–Hooke-invariant quantum field
theories in a unified manner. We could think of O(3) and O(2, 1) as isometry subgroups of
the spatial part of the de Sitter and anti-de Sitter spaces, with positive and negative curvature
κ , respectively. We shall work with their double covers, U(2) and U(1, 1) instead, for
convenience. The Lie algebra commutators of our basic symmetry group Gκ will be

[A+, A−] = 2κH − �, [H,A±] = ±A±, [�, all] = 0, (1)

where H will represent the Hamiltonian, � will play the role of the zero-point energy (or the
total number of particles operator in second quantization), A± will be ladder creation and
annihilation operators and κ = ±1, 0 is the curvature parameter for U(2), U(1, 1) and the
Newton–Hooke (harmonic oscillator) groups, respectively.

The group U(1, 1) is noncompact, so, unlike the case of U(2), all its unitary irreducible
representations (unirreps) are infinite dimensional. This group has a number of series of
unirreps: principal, discrete and supplementary. We shall consider here only representations
of the discrete series where each carrier space Hs is labelled by the (conformal) spin s =
1/2, 1, 3/2, 2, . . . and is spanned by the orthonormal basis B(Hs) = {|s, n〉, n = 0, 1, 2, . . .}.
The action of the operators (1) on these basis vectors is

H |s, n〉 = n|s, n〉, A+|s, n〉 = √
(n + 1)(2s − κn)|s, n + 1〉,

�|s, n〉 = 2s|s, n〉, A−|s, n〉 = √
n(2s − κ(n − 1))|s, n − 1〉. (2)

Looking at this representation, we can think of an ‘exotic’ harmonic oscillator with an
equispaced energy spectrum En = εn, where we have introduced the interlevel energy spacing
ε = h̄ω to give dimensions. For negative, κ = −1, and zero, κ = 0, curvature (i.e., for U(1, 1)

and the Newton–Hooke groups, respectively), this energy spectrum is unbounded from above,
whereas for positive curvature, κ = 1 (i.e., for U(2)), we have a bounded spectrum with 2s + 1
states.

Using the standard Iwasawa decomposition (see e.g. [4]), any group element U ∈ Gκ can
be represented as

U(ζ, ζ̄ , τ, ϕ) = eζA+−ζ̄A− eiτH eiϕ�, (3)

where ϕ, τ ∈ [0, 2π ] and ζ ∈ C. An important ingredient to construct a Gκ -invariant quantum
field theory, as a second quantization on Gκ , will be the irreducible matrix coefficients of
representation (2) in the orthonormal basis B(Hs):

U(s)
mn(ζ, ζ̄ , τ, ϕ) ≡ 〈s,m|U(ζ, ζ̄ , τ, ϕ)|s, n〉. (4)

Given the Fourier expansion in modes of a field with (conformal) spin s,

|ψ〉 =
∑
n=0

an|s, n〉, (5)
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the Fourier coefficients an (resp. a
†
n) are promoted to annihilation (resp. creation) operators

of energy modes En = h̄ωn in the second quantized theory, with commutation relations[
an, a

†
m

] = δn,m. The (finite) action of Gκ on annihilation operators is

am → a′
m =

∞∑
n=0

U(s)
mn(ζ, ζ̄ , τ, ϕ)an, (6)

together with the conjugated expression for creation operators. The infinitesimal generators
of this finite action are the second quantized version, Ĥ , �̂, Â±, of the basic operators (1).
They have the following expression:

Ĥ =
∑

n

na†
nan, Â+ =

∑
n

√
(n + 1)(2s − κn)a†

nan+1,

�̂ = 2s
∑

n

a†
nan, Â− =

∑
n

√
n(2s − κ(n − 1))a†

nan−1,
(7)

where summations start at n = 0 and are finite or infinite, depending on the curvature κ . Here
we highlight the total energy operator, Ê ≡ h̄ωĤ , and the total number of particles operator,
N̂ ≡ 1

2s
�̂.

The vacuum |0〉 of the second quantized theory is characterized by being stable under the
basic isometry group Gκ , i.e.

U |0〉 = |0〉, ∀U ∈ Gκ ⇒ {Ĥ , �̂, Â+, Â−}|0〉 = 0, (8)

and annihilated by an|0〉 = 0,∀n � 0. Then an orthonormal basis for the Hilbert space of
the second quantized theory is constructed by taking the orbit through the vacuum |0〉 of the
creation operators a

†
n:

|q(n1), . . . , q(np)〉 ≡
(
a
†
n1

)q(n1) · · · (a†
np

)q(np)

(q(n1)! · · · q(np)!)1/2
|0〉, (9)

where q(n) ∈ N denotes the occupation number of the energy level n. Note that any second
quantized state (9) made up of an arbitrary content of zero modes, like

|θ〉 ≡
∞∑

q=0

θq

(
a
†
0

)q |0〉, (10)

has zero total energy, i.e. Ĥ |θ〉 = 0. It also verifies Â−|θ〉 = 0 and an|θ〉 = 0,∀n > 0, so that
the state (10) behaves as a (degenerated) vacuum under the (unbroken) subgroup B ⊂ Gκ of
affine or similitude transformations, generated by B = {Ĥ , Â−}. Moreover, given that a0 acts
as (a multiple of) the identity operator in the broken theory, that is, it commutes with

[a0, Ĥ ] = [a0, Â−] = [
a0, a

†
n

] = 0, ∀n > 0, (11)

it is natural to demand a0 to leave the affine vacuum (10) stable, which implies that

a0|θ〉 = θ |θ〉 ⇒ |θ〉 = eθa
†
0−θ̄a0 |0〉. (12)

Thus, the vacuum of our (spontaneously) broken theory will be a coherent state of zero modes
(see [4] and [5] for a thorough exposition on coherent states). The squared modulus of the
complex parameter θ has the physical significance of the vacuum expectation value of the
number operator in the new vacuum; indeed, one can verify that

〈θ |N̂ |θ〉 = |θ |2. (13)

We can think of zero modes as virtual particles without (‘bright’) energy, undetectable (‘dark’)
by affine observers. However, we shall show that a general unitary symmetry transformation
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(6), which incorporates the broken symmetry generator Â+, produces a ‘rearrangement’ of the
the affine vacuum |θ〉 and makes it to radiate. In other words, we shall associate a thermal
bath with the excited (or, let us say, ‘polarized’) vacuum,

|θ ′〉 ≡ eθa
′†
0 −θ̄a′

0 |0〉, (14)

and we shall show in sections 2 and 3 that the mean energy per mode, 〈θ ′|Ê|θ ′〉, matches
the Bose–Einstein (BE) and Fermi–Dirac (FD) expressions for the non-compact U(1, 1) and
compact U(2) isometry groups (κ = ∓1), respectively. The limit of high frequencies (or large
interlevel energy spacing h̄ω � kBT ) is regained from a contraction to the Newton–Hooke
group (zero curvature, κ = 0), as explained in section 4. Note however that the average
number of particles is conserved under this (unitary) transformation, i.e. 〈θ ′|N̂ |θ ′〉 = |θ |2,
because U †U = 1. We shall relate this quantity to a vacuum energy density, the sign of which
depends on the curvature κ , and we shall make some comments on the cosmological constant
problem in section 5.

2. Hyperbolic geometry and BE statistics

The irreducible matrix coefficients of representation (2) in the orthonormal basis B(Hs) are
given in this case (κ = −1) by

U(s)
mn(ζ, ζ̄ , τ, ϕ) = e2siϕ(1 − zz̄)s

√
C

(s)
m

C
(s)
n

m∑
q=max(0,m−n)

(
n

m − q

)(
2s + n + q − 1

q

)

× (−1)n−m+q einτ zq z̄n−m+q, (15)

where C(s)
n = n!/(2s + n − 1)!, ζ = |ζ | eiφ and z ≡ eiφ tanh|ζ | is restricted to the unit disc

D = {z ∈ C : |z| < 1}, which is the stereographic projection of the upper sheet of the
hyperboloid H

2 = {�v ∈ R
3 : �v2 = v2

0 − v2
1 − v2

2 = 1, v0 > 0} onto the complex plane. The
correspondence is established through

�v = (cosh(2|ζ |), sinh(2|ζ |) cos φ, sinh(2|ζ |) sin φ).

The finite action (6) of U(1, 1) on annihilation (resp. creation) operators of zero modes is

a0 → a′
0 = e2siϕ(1 + zz̄)s

∞∑
n=0

(−1)n
(

2s + n − 1

n

)1/2

einτ z̄nan, (16)

which leads to the excited vacuum:

|θ ′〉 ≡ eθa
′†
0 −θ̄a′

0 |0〉 = e−|θ |2/2
∞∑

q=0

zq
∑

m1,...,mq :∑q

n=1 nmn=q

q∏
n=0

Rmn
n

mn!

q∏
n=0

(
a†

n

)mn |0〉, (17)

where Rn ≡ θ(−1)n e−2siϕ−inτ (1 − zz̄)s
(2s+n−1

n

)1/2
and we set m0 ≡ 0. We have used the

general identity( ∞∑
n=0

γnz
n

)l

=
∞∑

q=0

δqz
q, δ0 = γ l

0, δq = 1

qγ0

q∑
s=1

(sm − q + s)γsδq−s . (18)

From (17), we see that the relative probability of observing a state with total energy Eq = h̄ωq

in the excited vacuum |θ ′〉 is

Pq = �(Eq)(|z|2)q, �(Eq) ≡
∑

m1,...,mq :∑q

n=1 nmn=q

q∏
n=0

|Rn|2mn

mn!
. (19)
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We can associate a thermal bath with this distribution function by noting that �(Eq) behaves
as a relative weight proportional to the number of states with energy Eq = h̄ωq; the factor
(|z|2)q fits this weight properly to a temperature T as

(|z|2)q = eqlog|z|2 = e− Eq

kB T , T ≡ − h̄ω

kB log|z|2 . (20)

We could think of (conformal) U(1, 1) transformations as transitions to a uniformly relativistic
accelerated frame (see e.g. [3]), so that T = h̄a

2πckB
is the temperature associated with a given

acceleration a ≡ −2πωc/log|z|2.
After some intermediate calculations, the expected value of the total energy Ê in the

accelerated vacuum |θ ′〉 proves to be

〈θ ′|Ê|θ ′〉 = |θ |2(1 − |z|2)2s

∞∑
n=0

h̄ωn

(
2s + n − 1

n

)
|z|2n

= 2s|θ |2h̄ω
|z|2

1 − |z|2 = 2s|θ |2 h̄ω e−h̄ω/kBT

1 − e−h̄ω/kBT
, (21)

which is proportional to the mean energy per mode of the BE statistics. In D spatial dimensions,
the number of states with frequency between ω and ω + dω is proportional to ωD−1. Thus, for
D = 3, the spectral distribution of the radiation of the accelerated vacuum |θ ′〉 is Planckian,
i.e. |θ ′〉 radiates as a black body.

Still, we could have introduced a chemical potential µ by setting |z|2 = e(µ−h̄ω)/kBT with
the restriction µ < h̄ω, in order to preserve the condition |z| < 1.

3. Spherical geometry and FD statistics

The irreducible matrix coefficients of representation (2) in the orthonormal basis B(Hs) are
given in this case (κ = 1) by

U(s)
mn(ζ, ζ̄ , τ, ϕ) = e2siϕ(1 + zz̄)−s

√
C

(s)
m

C
(s)
n

min(m,2s−n)∑
q=max(0,m−n)

(
n

m − q

)(
2s − n

q

)

× (−1)n−m+q einτ zq z̄n−m+q, (22)

where C(s)
n = (2s

n

)−1
and z ≡ eiφ tan|ζ | is now related to the stereographic projection of the

two-dimensional sphere S
2 = {�v ∈ R

3 : �v2 = v2
0 + v2

1 + v2
2 = 1} onto the complex plane, given

by

�v = (cos(2|ζ |), sin(2|ζ |) cos φ, sin(2|ζ |) sin φ).

The finite action of U(2) on annihilation (resp. creation) operators of zero modes is now

a0 → a′
0 = e2siϕ(1 + zz̄)−s

2s∑
n=0

(−1)n
(

2s

n

)1/2

einτ z̄nan, (23)

which leads to the polarized vacuum |θ ′〉 according to formula (14). As for the hyperbolic
case, we can associate a thermal bath with the state |θ ′〉. The difference now is that the factor
|z|2 is unbounded from above, i.e. |z|2 < ∞, which means that we have to introduce a non-zero
chemical potential µ, such that |z|2 = e(µ−h̄ω)/kBT , or/and allow for negative temperatures.
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The expected value of the total energy Ê in the polarized vacuum |θ ′〉 proves to be

〈θ ′|Ê|θ ′〉 = |θ |2(1 + |z|2)−2s

2s∑
n=0

h̄ωn

(
2s

n

)
|z|2n

= 2s|θ |2h̄ω
|z|2

1 + |z|2 = 2s|θ |2 h̄ω

1 + e(h̄ω−µ)/kBT
, (24)

which is proportional to the mean energy per mode of the FD statistics.

4. Flat geometry and the high frequency limit

Like in the previous two cases, one can compute the finite action of the Newton–Hooke group
G0 on annihilation (resp. creation) operators of zero modes:

a0 → a′
0 = e2siϕ e−2s|z|2/2

∞∑
n=0

(−1)neiτ

√
(2s)n

n!
z̄nan, (25)

where z ≡ ζ is unbounded, |z| < ∞, like for the spherical geometry. The expected value of
the total energy Ê in the excited vacuum |θ ′〉 is now

〈θ ′|Ê|θ ′〉 = |θ |2 e−2s|z|2
∞∑

n=0

h̄ωn
(2s)n

n!
|z|2n

= 2s|θ |2h̄ω|z|2 = 2s|θ |2h̄ω e(µ−h̄ω)/kBT , (26)

which is the h̄ω � kBT limit of the BE and FD statistics. Note that, unlike for the BE and FD
statistics, here we could ‘reabsorb’ the chemical potential µ into the vacuum expectation value
of the total number of particles |θ |2 by setting |θ |2 = e−µ/kBT . Therefore, the introduction of
µ in our scheme is only indispensable for the FD statistics.

5. Comments and outlook

We have separated standard (‘bright’) energy Ĥ from vacuum (‘dark’) energy �̂ in our model.
However, we could combine both contributions to define a total Hamiltonian,

Ĥ tot = Ĥ +
κ

2
�̂, (27)

such that the map Ĥ �→ Ĥ tot renders the original commutation relations (1) into [Â+, Â−] =
2κĤ , for κ = ±1, and [Â+, Â−] = −�̂, for κ = 0. Hence, the vacuum energy is now given
by

〈θ |Ĥ tot|θ〉 = κ

2
〈θ |�̂|θ〉 = κs|θ |2. (28)

Although we are dealing with a simplified (toy) model, we feel tempted to link this
vacuum energy to a cosmological constant, as is done in modern cosmology. From this
point of view, hyperbolic spatial geometries (κ = −1), like the anti-de Sitter spacetime, have
positive pressure, which causes the expansion of empty space to slow down. In contrast, for
spherical spatial geometries (κ = 1), like the de Sitter space, the expansion of empty space
will tend to speed up. For flat space (κ = 0) we have zero cosmological constant. Note that we
can make the parameter |θ |2 as small as we like, thus eluding huge vacuum energies for either
spherical or hyperbolic geometries. Therefore, our derivation of the cosmological constant
from the vacuum energy in quantum field theory is free from the traditional drawbacks of
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‘fine-tuning’. Moreover, the three spatial geometries, κ = ±1, 0, considered in this letter
have different qualitative behaviour under vacuum radiation at low frequencies, something
that could be used in addition to experimentally discern between these topologies.

We have presented here a quite simplified model, but we think that it grasps the essentials
of more involved instances. A proper discussion of all these vacuum phenomena inside the
entire conformal group SO(4, 2) will be developed elsewhere.
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